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We propose that bio-inspired algorithms are best developed and
analysed in the context of a multidisciplinary conceptual frame-
work that provides for sophisticated biological models and well-
founded analytical principles, and we outline such a framework
here, in the context of Artificial Immune System (AIS) network
models, and we discuss mathematical techniques for analysing
the state dynamics of AIS. We further propose ways to unify
several domains into a common meta-framework, in the context
of AIS population models. We finally discuss a case study, and
hint at the possibility of a novel instantiation of such a meta-
framework, thereby allowing the building of a specific computa-
tional framework that is inspired by biology, but not restricted to
any one particular biological domain.

1 INTRODUCTION

The idea of biological inspiration for computing is as old as computing itself.
It is implicit in the writings of von Neumann and Turing, despite the fact that
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FIGURE 1
An outline conceptual framework for a bio-inspired computational domain

these two fathers of computing are now more associated with the standard,
distinctly non-biological computational models.

Computation is rife with bio-inspired models (neural nets, evolutionary
algorithms, artificial immune systems, swarm algorithms, ant colony algo-
rithms, L-systems, . . . ). However, many of these models are naive with re-
spect to biology. Even though these models can work extremely well, their
naivety often blocks understanding, development, and analysis of the compu-
tations, as well as possible feedback into biology.

2 A CONCEPTUAL FRAMEWORK

The next steps in bio-inspired computation should be to develop more sophis-
ticated biological models as sources of computational inspiration, and to use
a conceptual framework to develop and analyse the computational metaphors
and algorithms.

We propose that bio-inspired algorithms are best developed and analysed
in the context of a multidisciplinary conceptual framework that provides for
sophisticated biological models and well-founded analytical principles.

Figure 1 illustrates a possible structure for such a conceptual framework.
Here probes (observations and experiments) are used to provide a (partial and
noisy) view of the complex biological system. From this limited view, we
build and validate simplifying abstract representations, models, of the biol-
ogy. From these biological models we build and validate analytical com-
putational frameworks. Validation may use mathematical analysis, bench-
mark problems, and engineering demonstrators. These frameworks provide
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principles for designing and analysing bio-inspired algorithms applicable to
non-biological problems, possibly tailored to a range of problem domains,
and contain as much or as little biological realism as appropriate. The con-
cept flow also supports the design of algorithms specifically tailored to mod-
elling the original biological domain, permits influencing and validating the
structure of the biological models, and can help suggest ideas of further ex-
periments to probe the biological system. This is necessarily an interdisci-
plinary process, requiring collaboration between (at least) biologists, mathe-
maticians, and computer scientists to build a complete framework.

An important observation is that none of the representation and modelling
steps outlined above is unbiased. There are many possible probes, and many
possible representations of the same systems even given the same probes, and
they all provide different insights. In particular, models derived specifically
for the goals of biological simulation may provide insights that are distinct
from those that serve computational goals.

It is very seldom that the modelling steps used in these distinct activi-
ties are examined for common properties, and comparative biases. In many
instances not all of the representational steps outlined above are taken. In par-
ticular, bio-inspired computational algorithms usually proceed directly from
a (naive) biological model to an algorithm, with little analytical framing of
the representation’s properties. Such “reasoning by metaphor” is a troubling
aspect of these algorithms. Without the application of suitable analysis tech-
niques to the simplified representations of biological systems, algorithms de-
rived from these representations rely only on the (often weak) analogy to the
biological system to support their use. We feel that it is important to recog-
nise the distinct levels of the modelling process outlined above, to avoid naive
assumptions.

One example that can be described in terms of such a framework, at least
partially, is Holland’s original adaptive system theories [26, 20], founded on
a simplified binary-encoded representation of genetics, and analytical princi-
ples of building blocks, k-armed bandit theories, the schema theorem, and
implicit parallelism. Evolutionary computation theory has developed and
deepened in the wake of this work, and it continues to influence the prescrip-
tion of genetic algorithms. We propose that other bio-inspired computational
domains, including Artificial Immune Systems, should be put on a similarly
sound footing.
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3 INSTANTIATING THE FRAMEWORK FOR AIS

The natural immune system is a complex biological system essential for sur-
vival. It involves a variety of interacting cellular and molecular elements that
control either micro- or macro-system dynamics. The effectiveness of the sys-
tem is due to a set of synergetic, and sometimes competitive, internal strate-
gies to cope with chronic and/or rare pathogenic challenges (antigens). Such
strategies remodel over time as the organism develops, matures, and then
ages (immuno-senescence). The strategies of the immune system are based
on task distribution to obtain distributed solutions to problems (different cells
are able to carry out complementary tasks) and solutions to distributed prob-
lems (similar cells carrying out the same task in a physically distributed sys-
tem). Thus, cellular interactions can be envisaged as parallel and distributed
processes among cells with different dynamical behaviour, and the resulting
immune responses appear to be emergent properties of self-organising pro-
cesses. Theories abound in immunology pertaining to how the immune sys-
tem remembers antigenic encounters (maintenance of memory cells, use of
immune networks), and how the immune system differentiates between self
and non-self molecules (negative selection, self-assertion, danger theory).

We can explicitly exploit the conceptual framework, in order to develop,
analyse and validate sophisticated novel bio-inspired computational schemes,
including those inspired by complex processes within the natural immune
system. This work needs to be done; here we outline a suggested route.

3.1 A First Step: Interdisciplinary Research
AIS is a relatively new and emerging bio-inspired area and progress has been
made from naively exploiting mechanisms of the immune system. Computer
security systems have been developed, anti-virus software has been created,
optimisation and data mining tools have been created that are performing as
well as the current state of the art in those areas.

The original AIS were developed with an interdisciplinary slant. For ex-
ample, Bersini [2, 3, 4] pays clear attention to the development of immune
network models, and then applies these models to a control problem char-
acterised by a discrete state vector in a state space RL. Bersini’s proposal
relaxes the conventional control strategies, which attempt to drive the process
under control to a specific zone of the state space; he instead argues that the
metadynamics of the immune network is akin to a meta-control whose aim is
to keep the concentration of the antibodies in a certain range of viability so as
to continuously preserve the identity of the system.
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FIGURE 2
A structure for AIS, from [10]

There are other examples of interdisciplinary work, such as the develop-
ment of immune gene libraries and ultimately a bone marrow algorithm em-
ployed in AIS [25], and the development of the negative selection algorithm
and the first application to computer security [16].

However, in more recent years, work on AIS has drifted away from the
more biologically-appealing models and attention to biological detail, with a
focus on more engineering-oriented approach. This has led to systems that
are examples of “reasoning by metaphor”. These include simple models of
clonal selection and immune networks [12, 13, 60, 42], and negative selection
algorithms [6, 22, 59]. We suggest that even such an engineering-oriented
approach may benefit from closer interaction with biologists, and from a more
principled mechanism for the extraction, articulation, and application of the
underlying computational metaphor.

Freitas & Timmis [17] outline the need to take into account the applica-
tion domain when developing AIS. The conceptual framework proposal here
complements that position: once we have a well-developed conceptual frame-
work, we can specialise it for various application domains in a justifiable way.

3.2 Adopting the Conceptual Framework for AIS
de Castro & Timmis [10] propose a structure for engineering AIS. The ba-
sis is a representation to create abstract models of immune organs, cells, and
molecules, together with a set of affinity functions to quantify the interac-
tions of these “artificial elements”, and a set of general-purpose algorithms
to govern the dynamics of the AIS.

The structure can be modelled as a layered approach (figure 2). To build a
system, one typically requires an application domain or target function. From
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this basis, a representation of the system’s components is chosen. This rep-
resentation is domain and problem dependent: the representation of network
traffic, say, may well be different from that of a real time embedded sys-
tem. The representation-specific affinity measures quantify the interactions
of the elements of the system. There are many possible affinity measures,
such as Hamming or Euclidean distances. The final layer involves the use
of algorithms, such as negative and positive selection, clonal selection, the
bone marrow algorithm, and immune network algorithms, which govern the
behaviour (dynamics) of the system. Each algorithm has its own particular
range of uses.

This layered structure is not complete from the conceptual framework per-
spective. For example, we propose that AIS algorithms (in some cases) may
benefit from asking questions such as: what is “self”, or “danger”. In ad-
dition, AIS algorithms in their current form can be classified as population
based or network based [10]. In the following sections, we adopt this classi-
fication, and propose how one might undergo a development of an AIS algo-
rithms adopting the conceptual framework above.

3.3 Population Based AIS Algorithms
Three common algorithms in AIS, those of positive, negative, and clonal se-
lection, are all based on populations of agents trained to recognise certain
aspects of interest (see [10] for an overview). There are similarities between
the algorithms: positive and negative selection, for example, are merely two
sides of the same coin. There are also differences: positive and negative se-
lection involve essentially random generation of candidate recognisers, whilst
clonal selection uses a form of reinforcement based on selection and mutation
of the best recognisers.

We defer discussion of these models to the meta-frameworks of section 5,
and population based models in general.

3.4 Network Based AIS Algorithms
Jerne’s original immune network theory [30] suggests an immune system with
a dynamic behaviour even in the absence of non-self antigens. This differs
from the biological basis of the clonal and negative selection algorithms, as it
suggests that B-cells are capable of recognising each other.

Theoretical immunologists have been interested in creating models of im-
mune networks in order to introduce new ways of explaining how the immune
systems works [52, 14]. Researchers have translated some of these ideas into
the computing domain, in applications such as optimisation and control [2, 4].
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This work has also inspired the development of machine learning network
models with applications mainly in data analysis [60, 13].

However, as we stated earlier, the later work has somewhat deviated from
the biological model, being adapted to a particular problem. In addition,
Jerne’s immune network theory itself is controversial, and not widely ac-
cepted by immunologists. This has an impact on the AIS algorithm: if the
biology is not correct, then one must re-examine the algorithm to understand
what is really going on; this would hopefully shed light on the more com-
plex nature of the immune systems, and the networks that are clearly present
therein.

The first step to achieving this understanding would be to probe the biolog-
ical system from the perspective of interpreting the system as a network of in-
teraction, cooperation and competition amongst molecules, cells, organs, and
tissues. The results could then be used to formulate a suitable mapping be-
tween biological properties and framework components. These components
could then be used as the basis for the topology and dynamics of new bio-
logical models, in addition to re-examining existing models such as [53, 55].
The new models would allow a greater understanding of the operation of such
systems to be developed in an artificial context.

Within the context of these new immune network models, one could ex-
amine, for example, Matzinger’s danger theory [37], context of response
[31, 36], memory mechanisms [58], general alarm response or stress response
[50], self/non-self recognition [39], and Varela’s self-assertion [64]. Addi-
tionally, the constructive role of noise in biological systems, which is an in-
trinsic feature of such systems, could also be examined [18].

From these biological models, suitable new computational metaphors and
analytical frameworks could be created, to include appropriate representa-
tions for components, methods of assessing interactions between compo-
nents, and processes to act on components. The frameworks should also
provide features that allow biological models to be represented and manip-
ulated in a number of ways, and should permit the analysis and identification
of generic properties. An instantiation of a framework should permit the cap-
ture of properties relevant to the application being developed. In an iterative
process, the framework algorithms should be implemented and tested in order
to test and develop the biological metaphors prior to their implementation and
experimental exercises on the intended platform.

Taking this fuller view of immune networks may yield AIS algorithms that
truly mimic the qualities of the diversity of immune network memory mech-
anisms, and may inform us as to the scalability of immune networks, their
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ability to cope more effectively with noise, their open nature, and the level
of interaction both within the network and external to the network. Biology
would benefit from the resulting sophisticated models, too.

3.5 Self, or Danger?
Some researchers have begun taking a more interdisciplinary slant again. For
example, Aicklen et al. [1] describe an ambitious interdisciplinary project
investigating novel ideas from immunology such as danger theory [37], with
application to computer security. Those authors propose to observe the bi-
ological system by undertaking new experiments to identify key signals in-
volved in cell death, and identify the functions of such signals and how these
affect immune cells. The aim is to shed light on how the immune system
distinguishes self from non-self, in order to build effective immune-inspired
computer security systems that no longer rely on the need to define a priori
the self of the system. Although those authors make no reference to adopting
a framework approach such as outlined above, we believe that taking such an
approach would to help to ensure not only biologically-plausible algorithms,
but effective and general solutions.

4 MATHEMATICAL ANALYSIS OF AIS

The adaptive immune system is able to recognise a vast number of differ-
ent pathogens. The recognition of potentially harmful foreign invaders is a
necessary (but not sufficient [62]) condition for the immune response to be
activated. The robustness of the immune response relies on the diversity of
the lymphocyte repertoire. This diversity is achieved in two ways. Firstly,
new cells are generated at random (although they may be selectively deleted
later). Secondly, the number of lymphocytes is huge: the total number of
lymphocytes in a mouse is of the order of 108, with approximately 107 dif-
ferent types of receptors, while in the human body there are of the order of
1012 lymphocytes [54]. These two aspects ensure the completeness of the
repertoire, in the sense that essentially all possible pathogens that might be
encountered will be recognised.

The importance of the size of the lymphocyte repertoire has not yet been
addressed for the development of AIS algorithms. Many AIS algorithms, in-
cluding CLONALG [10], the B-Cell Algorithm (BCA) [29, 33, 32] and MISA
[65], are based purely on mutation and selection mechanisms for randomly
generated clones (clonal selection), and these algorithms use very small pop-
ulations of artificial immune cells. The main reason is probably straight-
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forward: very large cell networks are computationally too expensive to im-
plement. However, the emergent properties of complex systems can depend
crucially on system size [24].

Lymphocytes interact and respond to one another in a highly complicated
and nonlinear fashion: a small difference in the input to the system can
produce a large (and complicated) change in the output. Nonlinearity is a
key feature of complex systems that display emergent phenomena [56, 57].
AIS algorithms that are inspired by the network of interactions in the adap-
tive immune system include the Resource-limited Artificial Immune Network
(RAIN) [41], AINE [35] and aINET [11].

In the next subsections, we show how the theory of Markov chains can be
used to understand the stochastic nature and convergence properties of AIS,
and explain how nonlinear effects in network models may be analysed.

4.1 Optimisation problems and Markov chains
Many AIS algorithms are based purely on clonal selection mechanisms, with-
out any interaction between the different members of the cell populations.
Such algorithms are purely stochastic, in the following sense: given the state
of the cell population at time t, the subsequent state at time t + 1 is a ran-
dom variable. In many cases, the changing behaviour of the population with
the time t (which varies in discrete steps) is naturally described in terms of a
Markov chain (see [8, 23] for background material).

Convergence is a highly desirable property for optimisation problems (al-
though not necessarily so for other kinds of problem, such as ones to do with
openness). The convergence of MISA [65], a multi-objective optimisation
algorithm, has been proved via an associated Markov chain, under the as-
sumption of an elitist selection mechanism. Many AIS algorithms have been
tested on optimisation problems, because such problems are ubiquitous in ap-
plications to optimal control [34] and the calculus of variations [19, 28, 27].
Furthermore, AIS apparently perform well in tackling extremely hard biolog-
ical optimisation problems, including protein folding [9, 45].

We represent the state of our system by a variable X . The aim of the
algorithm is to find the state value X that optimises (for example, minimises)
the function F (X). We can represent the state at time t by a random variable
Xt, and optimise by making many iterations in time.

To be completely concrete, we illustrate this idea with the example of BCA
[33, 29, 28, 32] as an optimisation algorithm, inspired by the notion of con-
tiguous hypermutation in B-cell clones. For BCA, the different cells in the
population do not interact, so we can focus on the dynamics of one individual
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cell, and define the state Xt to be the value of the bit string corresponding
to this cell. At each time t, a set of clones is taken from the cell, hyper-
mutation is applied to the clones, and if for some clone Ct it happens that
F (Ct) < F (Xt) then the next state value is Xt+1 = Ct, otherwise the orig-
inal cell is kept and Xt+1 = Xt (see [33] for details). At each stage there is
a definite probability for transition to a new state (bit string) value for Xt+1,
and BCA is purely elitist in the sense that only mutations that result in im-
provement are kept (the value of F (Xt) is non-increasing with t).

To describe the evolution of a cell in BCA in terms of a Markov chain, we
label the possible states (bit strings) by an index j running from 1 to N , where
N is the number of possible states, and we implicitly identify state values with
their labels. We model the value of the bit string at time t by the probability
distribution vector vt = (vt,1, vt,2, . . . , vt,N ), with jth component vt,j =
P (Xt = j): the probability of being in state j at time t. The initial value is
given by v0.

The probability of transition between state j and state k is independent of
the time t, and so can be represented by the N ×N transition matrix P, with
entries Pjk = P (Xt+1 = k |Xt = j): the probability of being in state k at
time t + 1, given being in state j at time t. P is a stochastic matrix: all of
its entries lie between 0 and 1, and the row sums satisfy

∑
k Pjk = 1; that is,

from state j the cell must make a transition somewhere with probability 1.
To work out the probability distribution at time t + 1, we have

P (Xt+1 = k) =
N∑

j=1

P (Xt+1 = k ∩ Xt = j) (4.1)

=
N∑

j=1

P (Xt+1 = k |Xt = j) P (Xt = j) (4.2)

and so

vt+1,k =
N∑

j=1

vt,jPjk or vt+1 = vt P (4.3)

Because the transition matrix P is time-independent, the probability distri-
bution vector vt can be written immediately in terms of the initial distribution,
as

vt = v0 Pt (4.4)

It is evident from the form of equation (4.4) that if we wish to understand
the long-time behaviour of the algorithm, we need to understand what hap-
pens to the powers of the transition matrix Pt as t →∞. For BCA it is further
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possible to prove that where there is a unique optimum state, it is reached with
probability one in the limit t →∞;? in the terminology of Markov chains, a
unique optimum is an absorbing state [23].

There are other instances of biologically-inspired computing being ap-
plied to optimisation problems and the calculus of variations, in particular
the use of genetic algorithms (see references in [29]) and neural networks
[38]. We expect that a similar analysis of stochastic properties will be rel-
evant to some of these other approaches to biologically-inspired computing.
Moreover, Markov chain techniques could be used to prove the convergence
(or otherwise) of many other existing AIS and genetic algorithms. A thor-
ough analysis of rates of convergence for optimisation algorithms would be
even more useful, since the limit t →∞ cannot be reached in practice.

4.2 Nonlinear dynamics
The dynamics of cell populations in the immune system has been modelled
extensively using nonlinear dynamical systems [21, 47, 54, 63]. These models
generally involve coupled systems of differential equations, taking the form

dz
dt

= f(z) (4.5)

where the vector z(t) is the state vector at time t; or coupled discrete (differ-
ence) equations

zt+1 = g(zt) (4.6)

In each case the components of the state vector z typically correspond to pop-
ulations of cells or molecules of different species, and in general each of the
components of the vectors f and g are nonlinear functions of their arguments.
(For analytical calculations, it is often simpler to work with systems of or-
dinary differential equations; but for computer algorithms discrete equations
are more appropriate).

The main difference between the dynamics of a Markov chain, defined by
equation (4.3), and the dynamical systems here, is that the evolution of the
state Xt is random and the vector vt is a probability distribution, whereas the
state vector z satisfies a purely deterministic evolution: the state at time t is
determined uniquely by the initial state at t = 0.

The original development of AIS algorithms received much inspiration
from mathematical models of immune networks (see section 3.4), such as
those in [54], which are based on nonlinear interactions between cell popu-
lations. Therefore, in order to understand the behaviour of AIS algorithms,

? Edward Clark (2004) private communication
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it makes sense to apply methods from the theory of nonlinear dynamical sys-
tems [48].

In general, given such a system such as that described by equation (4.6),
one would like to make sense of the time evolution of the state vector by un-
derstanding how it moves in the phase space (the space of all possible states).
One can explore this by iterating the difference equation: start with an initial
value z0, then calculate z1 (a nonlinear function f(z0)), z2, z3, . . . and so on.

For a general mapping of the form

zt −→ zt+1 = g(zt) (4.7)

it is natural to consider the fixed points, namely the solutions of the equa-
tion zs = g(zs) that remain fixed by equation (4.7). The initial value z0 is
said to be in the basin of attraction of the point zs if zt → zs as t → ∞.
For each fixed point there is a corresponding basin of attraction, and it is
well known [51] that for even simple cases such as Newton-Raphson itera-
tion, these basins are fractal sets. There are also periodic orbits which lie
outside the basins of attraction. For a high-dimensional dynamical system
the attractors can be more complicated than just points: they may be “strange
attractors”, which are themselves fractals [48]. The attractors and periodic
orbits correspond to the important landmarks in the phase space.

AIS networks are based on nonlinear interactions between artificial cell
populations. If an AIS network algorithm is required to perform some recog-
nition task, or solve a multi-objective optimisation problem, then the different
objectives might be regarded as attractors in a suitable phase space. Moreover,
one would expect that the properties of the nonlinear mathematical models
that have inspired the AIS, within the general development framework pro-
posed in this paper, should inform the behaviour of the immune-inspired al-
gorithms. Therefore nonlinear systems analysis will be essential in the devel-
opment of robust algorithms.

However, this is not the full story, since as we have seen above, even the
simplest AIS — those without any nonlinear interactions — are essentially
stochastic in nature. (In the Markov chain context, we may also note that
absorbing states play the role of attractors.) Hence the full treatment of AIS
will require nonlinear stochastic dynamical systems. Very little is known
about the explicit solutions of nonlinear stochastic differential equations, al-
though there is a considerable interest in the linear case [7]. The application
of nonlinear stochastic analysis to AIS is a novel approach which raises many
exciting challenges for the future.
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FIGURE 3
An outline conceptual framework for integrating bio-inspired computational domains

5 META-FRAMEWORKS FOR BIO-INSPIRED COMPUTATION

We have so far been speaking particularly of AIS, arguing the case for the
framework in figure 1. This shows potentially many representations of the
same systems under the same observations, each of which may provide dif-
ferent insights. Such distinct representations, although common, are seldom
examined for unifying properties. Once we have a conceptual framework,
we can not only make such comparisons, we can go a step further: to exam-
ine and compare the separate conceptual, mathematical and computational
frameworks, to develop more integrated and generic frameworks, and to ex-
pose essential differences.

To achieve this, we can apply the same conceptual model, at a higher level
(figure 3). The key probes here are meta-questions. Just as the questions at
the biological level influence the kinds of models developed, so the meta-
questions influence the kinds of meta-models developed.

5.1 Meta-probes for complex system frameworks
What kind of meta-questions might we ask? Clearly, the questions asked in-
fluence the resulting framework. We have identified some initial areas thought
to affect complex behaviour in general; questions that address notions such as
openness, diversity, interaction, structure, and scale might lead to models of
complex adaptive systems. The idea is to ask each question (suitably refined
and quantified) across the range of frameworks being incorporated, and to use
the answers as part of the input to build the meta-framework.

Openness: We do not want our computations to halt; we want continual
evolution, continual growth, continual addition of resources: that is, open,
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far-from-equilibrium systems. How much openness is necessary? How is
openness controlled by structure and interaction? How is system unity main-
tained in the presence of openness?

Diversity (heterogeneity) is present in all complex biological systems, and
occurs in structure, behaviour, and interactions. When can we talk of an
average agent? How much diversity is necessary within a level of a structure?
between levels? What does it cost? How does it combat fragility?

Interaction: Agents interact with their environment and with each other.
What are the features of interaction within structural levels? between levels?
What is the balance between computation and communication?

Structure: Biological systems have structure on a variety of levels, yet the
levels are not crisply delineated. Are the levels we discern artefacts of our
modelling framework? How can we recognise levels? When is a hierarchy
an adequate structural model? How does structure affect interaction? What
are the relationships between physical structures and information structures?
What is the relationship with specialisation of function? with localisation of
function?

Scale: Biological systems have a vast scale, a vast number of compo-
nents. When and how does ‘more’ become ‘different’? What are the critical
points/phase transitions? How small can a system be, and still be emergent?
When is a system too big? How important is multi-scale modelling? What
are the relationships between scale and diversity?

Generic questions apply to each meta-probe question area X: What is the
role of X within a system? What is the balance between X and not-X at the
peak of complexity? How and when does X emerge? How does X evolve?
How does physical embodiment affect X? How can we exploit X?

5.2 A Meta-Framework for population models
Many bio-inspired algorithms are based on populations of agents trained to
perform some task, or optimise some function. The most obvious one is the
area of evolutionary algorithms, based on analogy to populations of organ-
isms breeding and selecting to become “fitter” [40]. In AIS, there are the
positive and negative selection, and clonal selection algorithms. Swarm al-
gorithms and social insect algorithms [5] are based on populations of agents
whose co-operations result in problem solving. A neural network could be
viewed as a population of neurons cooperating to perform a recognition task.

Given the number of underlying commonalities, it seems sensible to ab-
stract a meta-framework from individual population based models. What are
the key properties of population models, and how are they realised in the
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various individual models? Here we outline just a few similarities and dif-
ferences of these models, which could be used in constructing a population
based meta-framework. (Since these individual frameworks themselves do
not yet exist, this section is somewhat meta-speculative!)

All these models contain a population of individual agents. Members of
the population usually exhibit a range of fitnesses, used when calculating a
new population: fitter individuals have a greater effect on the composition of
the next generation than do less-fit individuals. The aim is to find a population
that is sufficiently fit for the task at hand.

In evolutionary algorithms (EAs), a population of chromosomes repro-
duces in a fitness landscape. Fitter individuals are selected more frequently,
to breed the next generation. When described in these terms, the clonal se-
lection algorithm looks very similar: the population comprises a collection
of antibodies, which proliferate in an affinity landscape. The higher affinity
individuals are cloned more, and mutated less, when producing the next gen-
eration. Additionally, the lowest affinity cells are replaced by random cells
(providing automatic diversity maintenance). In swarm algorithms, a popu-
lation of particles exists and adapts in a fitness landscape. Fitter individuals’
properties are copied more by the next generation. In ant colony algorithms,
a population of paths exist in a local fitness (path component length) land-
scape. The use of components from fitter (shorter) paths are reinforced by
“pheromones” in the next generation, which is then constructed by “ants”
following pheromone trails.

In EAs, clonal AIS, and ant algorithms, the fitness of the entire popula-
tion is evaluated and used for selection and construction of next generation.
Swarm algorithm evaluate the fitness of each individual relative to the others
in its local neighbourhood. (Some EA variants incorporate niching, which
provides a degree of locality.)

In EAs, swarm and ant algorithms, the result is the fittest member of the
final population. In clonal AIS, however, the result is the entire final popula-
tion of detectors; the individual detectors are each partial and unreliable, yet
their combined cooperative effect makes the full robust detector.

Such commonalities and differences as outline above, once exposed and
analysed, can be used to suggest more general algorithms. For example, the
natural diversity maintenance of clonal AIS suggests ways for similar mech-
anisms to be added to other population algorithms, in a less ad hoc manner
than currently. Also, many population algorithms find themselves forced to
add some form of elitism to preserve the best solution so far: clonal AIS
is naturally elitist. One potentially interesting feature to explore is the rela-
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tionship between the natural locality of swarm algorithms, and the locality
inherent in danger theory.

Such a combination of models permits many of the meta-probe question
outlined above to be asked. Diversity is a key question: how to maintain
diversity within a single population, but additionally, should there be dif-
ferent “species”, too? Interaction with the environment (laying and sensing
pheromones) is crucial in the ant algorithms, and with other agents (at least at
the level of copying their behaviour) in swarm algorithms. Co-evolution, with
its effect on mutual fitness landscapes, can be regarded as a form of interac-
tion. What scale, that is, what population size, is appropriate? The probes
also force us to think of new issues: is openness a relevant aspect? Should we
be concerned with flows of agents into and out of the population (other than
by internal mechanisms of generational breeding)? And is there any way to
exploit structure, given the homogeneity of most population algorithms?

This somewhat simplistic meta-framework sketch is built on the corre-
spondingly simplistic population models. More sophisticated population mod-
els developed in terms of full conceptual frameworks would doubtless lead to
much richer and more powerful meta-frameworks.

5.3 A Meta-Framework for network models
AIS networks, metabolic networks, auto-catalytic chemical reaction networks,
intra-cellular protein interaction networks, inter-cellular cytokine, hormone
and growth factor signalling networks, ecological food webs, are all examples
of biological networks. Indeed, most biological processes operate through a
complicated network of interactions, with positive and negative feedback con-
trol by factors that are themselves subject to similar controls. These networks
function in a distributed fashion: most components have a variety of roles,
and most functions depend on more than one component. This presumably
underpins their robustness, whilst keeping the malleability required for adapt-
ability and evolution. How this is achieved in practice is poorly understood.

Currently mathematical and computational descriptions of the structure
of biological networks tend to be static (there is no time component to the
architecture), closed (no inputs from the environment), and homogeneous (the
types of nodes and connections are uniform, and new instances, and new
kinds, of connections and nodes, are not supported). It will be necessary
to develop novel mathematical approaches to model real complex biological
networks. Developing these new mathematical models in the context of the
proposed conceptual framework will provide mechanisms for evaluating their
appropriateness and power.
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6 CASE STUDY

On-going work by some of the authors [44] is addressing the development of
a more complete biologically inspired model of computation than is currently
available, and provides a case study upon which to deploy the meta-probes
described in section 5.1. The model is focused on the generic ability of the
“higher” organisms to maintain their homeostatic state in a wildly varying
environment. Key components of the organism which promote this ability
have been identified as:

The immune system, which provides mechanisms for very long term ad-
justment of an organism’s physiological state in a number of ways.

The neural system, which provides mechanisms capable of rapid and widely
varying responses from very specific parts of the organism. These may in-
volve interacting with the environment and/or internal organs.

The endocrine system, which provides mechanisms for relatively long term
(compared to the neural system) adjustment of behaviour of the organism.
The majority of endocrine system function is restricted to communication
and control within the organism.

Our model is initially intended for use as a control system for complex
electronic and electromechanical systems that would profit from long term
autonomous operation. Autonomous robots are the specific exemplar of this
type of system which we have chosen to target [43]. Our system contains
direct analogues of these three systems:

An artificial immune system, which will consist of two layers of cells: an
innate layer to pre-process and filter data from condition sensors distributed
throughout the robot, and an adaptive layer capable of monitoring and adapt-
ing to problems signalled by the innate system. The performance and adap-
tation of the adaptive layer will be modulated by the concentrations of hor-
mones generated by the artificial endocrine system.

An artificial neural system, which will consist of relatively conventional
artificial neurons. These will be connected as multi-layer perceptrons, but the
synapses of the neurons will be sensitive to hormones produced by the artifi-
cial endocrine system [43]. Hormone concentrations will linearly suppress or
excite the activity of synapses depending on the sign of the sensitivities asso-
ciated with each hormone at each synapse. The inputs to the neural system
will come from sensors of the environment and the outputs will control the
system actuators.

An artificial endocrine system, which will consist of networks of cells con-
nected in a similar manner to artificial neural networks. The terminal cells
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of each endocrine network will however produce and release “hormone” de-
pending on the inputs that it receives. The hormone concentrations in the
system will be global properties and will influence the behaviour of all three
of the systems including the endocrine system itself.

The examination of this system in the light of the meta-probes of sec-
tion 5.1 reveals a number of interesting properties and some key compro-
mises.

The system is really only open in the sense that it is intended to oper-
ate for very long periods of time without interruption. There is no current
mechanism proposed for the addition of elements to the system, although a
number of artificial hormone controlled mechanisms are under consideration.
Analysis of biological growth control hormones and potential analogues may
provide mechanisms which could be integrated into our overall structure. At
present however this lack of development is the first major compromise in our
structure.

Diversity is present on a number of levels: the division between neurons,
gland cells (the artificial endocrine system) and immune cells provides one
layer of heterogeneity. The presence of multiple types of immune cell and
multiple hormones provides another. All of these components behave in dif-
ferent ways and communicate in some common and some specialised ways.
This diversity provides two key advantages: it allows the processing of di-
verse signals from a number of sources (both within the robot itself and from
the environment) and the control of the system on a variety of time-scales
in an integrated fashion. The artificial endocrine system provides a common
communication channel capable of working across this range of time-scales
and mechanisms.

Interaction is varied and locally simple. A large number of relatively low
capacity communication channels promotes the emergence of complex be-
haviour. The transmission of signals across synapses in the artificial neural
system and artificial endocrine system provides the shortest time-scale chan-
nel and the hormone concentrations provided by the artificial endocrine sys-
tem the longest time-scale signal. In the biological system the immune system
generates endocrine signals over potentially very long time-scales that are ca-
pable of controlling both the neural and endocrine system; in our artificial
system we have chosen to ignore these signals. This is a further key compro-
mise that restricts the ability of the artificial immune system to control and
avert damage. Further examination of the role of hormones and cytokines
and specifically the stress response [15, 49] may provide clues about how to
successfully exploit such a mechanism.
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The structure of the system is crudely seen in the description at the be-
ginning of this section: neural system composed of probably several separate
neural networks, each composed of hormone sensitive neurons and synapses;
an endocrine system broken down in a very similar way to the neural system;
an immune system composed of two coupled populations of cells (innate and
adaptive). The specialisation of function within each system affects different
aspects of the potential for control on different time-scales and of different
physical mechanisms within the robot.

The proposed scale of the system presented here is currently limited. This
is mainly due to the major compromise on the openness of the system. The
engineering of a system based on these components will only be possible
for relatively small systems. The inherent modularity of structure (especially
within the neural and endocrine systems) allows these systems to built out
of a number of pre-trained and pre-organised subcomponents. Ultimately the
use of a developmental mechanism within the system will allow much larger
systems and a more blurred internal structure. For example, cross-linking
between the endocrine and neural networks might be permitted to develop
and may well allow more flexible, robust and effective control to develop.

Whilst the limitations of the system proposed are self-evident and exten-
sive, we believe that the selection of components and mechanisms provides a
sound basis for effective control of complex electro-mechanical systems. We
also believe that it fits well with the framework proposed here and that the
framework provides a useful tool for the analysis and further development of
the system.

7 DISCUSSION AND CONCLUSION

We have argued that bio-inspired algorithms would benefit from exploiting
more sophisticated biological models, and from being based on sound an-
alytical principles; we believe that biology could benefit from the resulting
sophisticated models, too. We have outlined what we believe to be a suit-
able conceptual framework including these various components. We have
suggested how AIS network models might fit into this framework.

We have additionally sketched how meta-frameworks, based on the same
underlying structure, might be applied at higher levels to unify various kinds
of bio-inspired architectures, and we have suggested how population based
models, including AIS models, might form one such meta-framework. We
do not expect that every individual model will fit perfectly into an integrated
model: part of the development process will be to expose essential differences
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as well as to integrate common abstractions.
One exciting prospect of a unified meta-framework is the possibility of a

novel instantiation, possibly using concepts from across a range of biological
domains, and possibly using concepts from outside biology (since words like
“Lamarck” and “teleology” need not be so necessarily dismissed in the artifi-
cial domain). This would allowing the building of a chimerical computational
framework that is inspired by biology, but not restricted to any one particular
biological domain.

8 ACKNOWLEDGEMENTS

The conceptual framework described in this paper was developed during the
EPSRC-funded EIVIS project. We would like to thank the other members of
the project for their invaluable contributions to some of the ideas in this paper:
Andrew Anderson, Jim Austin, Brian Bell, Peter Bentley, David Broomhead,
Robin Callard, Steve Furber, David Halliday, Douglas Kell, Alan Murray,
Jaroslav Stark, Stefan Wermter, David Willshaw, Xin Yao, Peter Young.

REFERENCES

[1] U. Aicklen, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. (2003). Danger theory: the link
between AIS and IDS? In Timmis et al. [61], pages 147–155.

[2] H. Bersini. (1991). Immune network and adaptive control. In Proc. First European
Conference on Artificial Life, pages 217–226. MIT Press.

[3] H. Bersini. (1992). Reinforcement and recruitment learning for adaptive process control.
In Proc. Int. Fuzzy Association Conference (IFAC/IFIP/IMACS) on Artificial Intelligence
in Real Time Control, pages 331–337.

[4] H. Bersini and F. J. Varela. (1994). The immune learning mechanisms: reinforce-
ment, recruitment and their applications. In R. Paton, editor, Computing with Biological
Metaphors, pages 166–192. Chapman & Hall.

[5] E. W. Bonabeau, M. Dorigo, and G Theraulaz. (1999). Swarm Intelligence: from natural
to artificial systems. Addison Wesley.

[6] D. W. Bradley and A. M. Tyrrell. (June 2002). Immunotronics: novel finite state machine
architectures with built in self test using self-nonself differentiation. IEEE Trans. Evo.
Comp., 6(3):227–238.
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